Tommy MacWilliam

tmacwilliam@cs50.net

October 24, 2011

Announcements

> psetd: returned
» pset5 scavenger hunt!

» submit sooner in the event of a tie!

» pset6 challenge!

v

v

vV Vv v VY

pset4
Valgrind

Bitwise Operators
Linked Lists
Stacks/Queues
Hash Tables

Binary Search Trees
Tries

#1 Design Mistake

» don’t run an expensive function unless you have to!

» remember strlen()? we moved that outside of loops
because we didn’t need to rerun an expensive function
every loop iteration

» if we’re not modifying a string, its length will never
change, so we don’t need to recalculate it

#1 Design Mistake

» in Sudoku, won() is an expensive function

» many moves (e.g. move cursor, delete number) will not
alter whether or not the board is won or not

» so, we shouldn’t be recalculating won()
» solution: cache the result of won in a variable

» checking the value of a variable is much faster than
running won()

#1 Design Mistake

» in fact, caching is a popular programming technique

» in many cases, perfectly-up-to-date data is
unnecessary

» for example, Facebook caches the number of friends
you have

» recalculating the friend count every time someone
views your page is unnecessary, since that won’t get
you any more friends

Valgrind

Valgrind

» another debugging tool (just like GDB)!

» GDB helps us find segfaults and logic errors, while
Valgrind finds memory errors

» Torun: valgrind -v —-leak-check=full
./<program>

Valgrind

Valgrind

» example time!

» helpmevalgrind.c, valgrindsavestheday.c

Bitwise Operators

» allow operations in the individual bits of a variable
> & - bitwise and

» | - bitwise or

» ~ - bitwise exclusive or (XOR)

>

>

>

Bitwise
Operators

<< - left shift
>> - right shift
~ - not

Bitwise Operators

Bitwise
Operators

Bitwise Operators

Bitwise
Operators

Bitwise Operators

Bitwise
Operators

Bitwise Operators

Bitwise

CpeEiEE » 2 & 3 = 0010 & 0011 = 0010
» 13 | 4 = 1101 | 0010 = 1111 = 15
» 7 ~ 3 = 0111 ~ 0011 = 0100 = 4

Bitwise
Operators

Bitwise Operators

void swap (intx a, intx Db)

a "= Db; b "= a; a

= 0011 ~
b = 0100 »
= 0111 ~
nowa = 4, b = 3

»
>
I
geg v
»
|

vVY VY
v
>
Il
v
|

» caveat: only works when a !

b;

, b = 4; swap(&a,

0100
0111
0011

b

» swapping numbers like a hacker with XOR

{

&b) ;

0111;
0011;
0100;

Bitwise Operators

Bitwise

SpSREE » 5 << 2 = 00000101 << 2 = 00010100 = 20
» 15 >> 2 = 00001111 >> 2 = 00000011 = 3
» ~13 = ~1101 = 0010 = 2

Linked Lists

12| «1—> 99| > 37| 1>

Linked Lists
» each node contains a value and a pointer to the next
node

» need to maintain a pointer to the first node
» last node points to NULL

Traversing

create pointer to iterate through list, starting at first
element

loop until iterator is NULL (aka no more elements)

at every point in loop, iterator will point at an element in
the linked list

» can access any element of the element

v

Linked Lists

v

v

to go to next element, simply move iterator to next

Traversing

nodex iterator = first;
while (iterator != NULL)

Linked Lists {

printf ("$s\n", iterator->word);
iterator = iterator—->next;

Inserting at Head

» make new node point to previous first node

Linked Lists
» make root point to new node

Inserting at Head

Linked Lists node_to_insert->next = first;
root->next = node_to_insert;

Inserting at Talil

» make last node point to new node

Linked Lists
» make new node point to NULL

Inserting at Talil

Linked Lists last->next = node_to_insert;
node_to_insert->next = NULL;

Deleting

Linked Lists » make previous node point to next node
» free node

Deleting

Linked Lists .
previous_node->next = node_to_remove->next;

free (node_to_remove) ;

Linked Lists

Linked Lists > example time!

» list.c

Stacks/Queues

» a linked list is one type of data structure

» data structure is a general term referring to how to store
multiple complex datatypes (like structs) in memory

» data structures can be more than just linear lists, as

Stacks/Queues We,” soon see

» stacks and queues can be specific types of linked lists

» answer the questions: where do | put new elements in
the list? which element is the “first” element?

Stacks

» LIFO: last in, first out

» put new element at end of list, take element off end of
list

» example: the stack in memory

Stacks/Queues

» put new stack frame on top, remove stack frame from
top when done

Queues

» FIFO: first in, first out

» put new element at end of list, take element off
beginning of list

» example: networks

Stacks/Queues

» handle requests in the order they come in

Stacks/Queues

» how can we use our linked list implementation from last
week to implement both stacks and queues?

» stack: insert new element at end using insert_tail, then
look at last element of the list

Stacks/Queues » or, insert new element at beginning using insert_head,

then look at first element of list
» queue: insert new element at beginning using
insert_head, then look at last element of list

» or, insert new element at end using insert_tail, then look
at first element of list

Hashtables

» also known as a hashmap, unordered map, etc.

» like an array: each “key” corresponds to a numerical
position in the hashtable

» keys don’t have to be numbers (string keys can be very
helpful)

Hashtables

» keys are “mapped” to values via a hash function

» example hash function: sum the letters of a string
» “hello” maps to position 104 + 101 + 108 + 108 + 111 =
532

Hashtables

» problem: what if a value maps to a key larger than our
hashtable?

» solution: use mod to ensure no key is greater than
hashtable size

» problem: what if two values map to the same key?

rlashtables » solution: each element of the hashtable is a linked list to

values that hash to that value (separate chaining)
» solution: store the value at another location in the
hashtable (probing)
» many other solutions!

Hashtables

» insertion/lookup just like an array

» calculate hash of key, then use that just like an array
index
» both O(1), very fast

Hashtables » however, have to consider:

» time it takes to hash a value
» length of time it takes to resolve a collision

Hashtables

» example time!
» hashtable.c

Hashtables

Binary Trees

» like a linked list, but nodes arranged in a tree rather
than in a straight line

» each node has at most two child nodes (contrast with
the linked list, where each node has one child node)

» value of left child node must be less than value of

Binary Trees pal‘ent nOde

» value or right child node must be greater than value of
parent node

Binary Trees

Binary Trees

Binary Trees

vV VvV VY

> insertion

start at root node

compare root value to value to insert

if less, use the root’s left child as the root and repeat
if greater, use the root’s right child as the root and
repeat

if the appropriate child is null, then insert new value

Binary Trees

» search

compare value to root node

if less, use root’s left child as the root and repeat

if greater, use root’s right child as the root and repeat
if appropriate child is null, then value is not present in
the tree

v vV VvV VY

Binary Trees

Binary Trees

» insertion/search: O(log n)

» just like binary search: cutting the problem in half with
each iteration

Binary Trees

Binary Trees

» example time!

» binarytree.c

Binary Trees

» also a tree, but each node can have more than two
children

» in a trie that stores words, each node contains a single
letter in a word

» each child node of represents the next letter in some
word
» so each node can have at most 26 children

> insertion

» start with first letter of word to insert

» create root node representing first letter if necessary

» move to next letter of word, using that node as the new
root node

» search

» start with first letter of word to insert

» check if child node of that letter exists

» if so, use that node as the new root node and move on
to next letter

» if no child node exists and we have no reached the end
of the search word, it isn’t found in the trie

» if we reach the end of the search word, it exists in the
trie

Practice Problems

» sum the elements of a binary tree
» hint: it's a one-line function!

» print out the elements of a binary tree from least to
greatest

» set/unset the rightmost bit of an integer

Practice
Problems

	pset4
	Valgrind
	Bitwise Operators
	Linked Lists
	Stacks/Queues
	Hashtables
	Binary Trees
	Tries
	Practice Problems

