
week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

week7

Tommy MacWilliam

tmacwilliam@cs50.net

October 24, 2011

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Announcements

I pset4: returned
I pset5 scavenger hunt!

I submit sooner in the event of a tie!

I pset6 challenge!

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Today

I pset4
I Valgrind
I Bitwise Operators
I Linked Lists
I Stacks/Queues
I Hash Tables
I Binary Search Trees
I Tries

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

#1 Design Mistake

I don’t run an expensive function unless you have to!
I remember strlen()? we moved that outside of loops

because we didn’t need to rerun an expensive function
every loop iteration

I if we’re not modifying a string, its length will never
change, so we don’t need to recalculate it

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

#1 Design Mistake

I in Sudoku, won() is an expensive function
I many moves (e.g. move cursor, delete number) will not

alter whether or not the board is won or not
I so, we shouldn’t be recalculating won()

I solution: cache the result of won in a variable
I checking the value of a variable is much faster than

running won()

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

#1 Design Mistake

I in fact, caching is a popular programming technique
I in many cases, perfectly-up-to-date data is

unnecessary
I for example, Facebook caches the number of friends

you have
I recalculating the friend count every time someone

views your page is unnecessary, since that won’t get
you any more friends

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Valgrind

I another debugging tool (just like GDB)!
I GDB helps us find segfaults and logic errors, while

Valgrind finds memory errors
I To run: valgrind -v --leak-check=full
./<program>

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Valgrind

I example time!
I helpmevalgrind.c, valgrindsavestheday.c

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I allow operations in the individual bits of a variable
I & - bitwise and
I | - bitwise or
I ^ - bitwise exclusive or (XOR)
I << - left shift
I >> - right shift
I ~ - not

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I 0 & 0 = 0

I 0 & 1 = 0

I 1 & 0 = 0

I 1 & 1 = 1

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I 0 | 0 = 0

I 0 | 1 = 1

I 1 | 0 = 1

I 1 | 1 = 1

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I 0 ^ 0 = 0

I 0 ^ 1 = 1

I 1 ^ 0 = 1

I 1 ^ 1 = 0

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I 2 & 3 = 0010 & 0011 = 0010 = 2

I 13 | 4 = 1101 | 0010 = 1111 = 15

I 7 ^ 3 = 0111 ^ 0011 = 0100 = 4

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I swapping numbers like a hacker with XOR

void swap(int* a, int* b) {

a ^= b; b ^= a; a ^= b;

}

I int a = 3, b = 4; swap(&a, &b);

I a ^= b: a = 0011 ^ 0100 = 0111;
I b ^= a: b = 0100 ^ 0111 = 0011;
I a ^= b: a = 0111 ^ 0011 = 0100;
I now a = 4, b = 3

I caveat: only works when a != b

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Bitwise Operators

I 5 << 2 = 00000101 << 2 = 00010100 = 20

I 15 >> 2 = 00001111 >> 2 = 00000011 = 3

I ~13 = ~1101 = 0010 = 2

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Linked Lists

I each node contains a value and a pointer to the next
node

I need to maintain a pointer to the first node
I last node points to NULL

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Traversing

I create pointer to iterate through list, starting at first
element

I loop until iterator is NULL (aka no more elements)
I at every point in loop, iterator will point at an element in

the linked list
I can access any element of the element

I to go to next element, simply move iterator to next

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Traversing

node* iterator = first;
while (iterator != NULL)
{

printf("%s\n", iterator->word);
iterator = iterator->next;

}

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Inserting at Head

I make new node point to previous first node
I make root point to new node

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Inserting at Head

node_to_insert->next = first;
root->next = node_to_insert;

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Inserting at Tail

I make last node point to new node
I make new node point to NULL

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Inserting at Tail

last->next = node_to_insert;
node_to_insert->next = NULL;

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Deleting

I make previous node point to next node
I free node

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Deleting

previous_node->next = node_to_remove->next;
free(node_to_remove);

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Linked Lists

I example time!
I list.c

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Stacks/Queues

I a linked list is one type of data structure
I data structure is a general term referring to how to store

multiple complex datatypes (like structs) in memory
I data structures can be more than just linear lists, as

we’ll soon see

I stacks and queues can be specific types of linked lists
I answer the questions: where do I put new elements in

the list? which element is the “first” element?

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Stacks

I LIFO: last in, first out
I put new element at end of list, take element off end of

list
I example: the stack in memory

I put new stack frame on top, remove stack frame from
top when done

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Queues

I FIFO: first in, first out
I put new element at end of list, take element off

beginning of list
I example: networks

I handle requests in the order they come in

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Stacks/Queues

I how can we use our linked list implementation from last
week to implement both stacks and queues?

I stack: insert new element at end using insert_tail, then
look at last element of the list

I or, insert new element at beginning using insert_head,
then look at first element of list

I queue: insert new element at beginning using
insert_head, then look at last element of list

I or, insert new element at end using insert_tail, then look
at first element of list

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Hashtables

I also known as a hashmap, unordered map, etc.
I like an array: each “key” corresponds to a numerical

position in the hashtable
I keys don’t have to be numbers (string keys can be very

helpful)

I keys are “mapped” to values via a hash function
I example hash function: sum the letters of a string
I “hello” maps to position 104 + 101 + 108 + 108 + 111 =

532

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Hashtables

I problem: what if a value maps to a key larger than our
hashtable?

I solution: use mod to ensure no key is greater than
hashtable size

I problem: what if two values map to the same key?
I solution: each element of the hashtable is a linked list to

values that hash to that value (separate chaining)
I solution: store the value at another location in the

hashtable (probing)
I many other solutions!

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Hashtables

I insertion/lookup just like an array
I calculate hash of key, then use that just like an array

index
I both O(1), very fast

I however, have to consider:
I time it takes to hash a value
I length of time it takes to resolve a collision

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Hashtables

I example time!
I hashtable.c

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

I like a linked list, but nodes arranged in a tree rather
than in a straight line

I each node has at most two child nodes (contrast with
the linked list, where each node has one child node)

I value of left child node must be less than value of
parent node

I value or right child node must be greater than value of
parent node

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

I insertion
I start at root node
I compare root value to value to insert
I if less, use the root’s left child as the root and repeat
I if greater, use the root’s right child as the root and

repeat
I if the appropriate child is null, then insert new value

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

I search
I compare value to root node
I if less, use root’s left child as the root and repeat
I if greater, use root’s right child as the root and repeat
I if appropriate child is null, then value is not present in

the tree

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

I insertion/search: O(log n)
I just like binary search: cutting the problem in half with

each iteration

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Binary Trees

I example time!
I binarytree.c

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Tries

I also a tree, but each node can have more than two
children

I in a trie that stores words, each node contains a single
letter in a word

I each child node of represents the next letter in some
word

I so each node can have at most 26 children

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Tries

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Tries

I insertion
I start with first letter of word to insert
I create root node representing first letter if necessary
I move to next letter of word, using that node as the new

root node

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Tries

I search
I start with first letter of word to insert
I check if child node of that letter exists
I if so, use that node as the new root node and move on

to next letter
I if no child node exists and we have no reached the end

of the search word, it isn’t found in the trie
I if we reach the end of the search word, it exists in the

trie

week7

Tommy
MacWilliam

pset4

Valgrind

Bitwise
Operators

Linked Lists

Stacks/Queues

Hashtables

Binary Trees

Tries

Practice
Problems

Practice Problems

I sum the elements of a binary tree
I hint: it’s a one-line function!

I print out the elements of a binary tree from least to
greatest

I set/unset the rightmost bit of an integer

	pset4
	Valgrind
	Bitwise Operators
	Linked Lists
	Stacks/Queues
	Hashtables
	Binary Trees
	Tries
	Practice Problems

