Computer Science 121: Introduction to Formal Systems and
Computation

Tommy MacWilliam <tmacwilliam@cs.harvard.edu>

December 19, 2011

1 Introduction and Overview

2 September 6: Sets, Relations, Strings, Languages
e sets are defined by their members
— A = B means that for every x x,€c Aiff t € B

sets can be finite or infinite

— if A is finite, then its cardinality |A| is the number of elements in A

— the empty set () has cardinality 0

set operations
— union: {a,b}U{b,c} ={a,b,c}
— intersection: {a,b} N{b,c} = {b}
— difference: {a,b} —{b,a} = {a}

A and B are disjoint if ANB =0
e power set of S = P(S)={X: X C S}

— P({a,b}) = {@, {a}, {0}, {a,b}}
— |P(S)| = 2!¥! (provided S is finite)

function f : S — T maps each element s € S to (exactly one) element of T, denoted f(s)

— one-to-one: s1 # s = f(s1) # f(s2)
— onto: for every ¢t € T there is an s € S such that f(s) =1t

— bijection: one-to-one and onto

S has (finite) cardinality n € N iff there is a bijection f: {1,...,n} = S

a k-ary relation on Sy, ..., Sk is a subset of S1 x -+ X S

— a binary relation on S is a subset of S x .S

a binary relation can be pictured as a directed graph

— formally, a directed graph G consists of a finite set V' of vertices and a set of edges E CV x V
x transitive: path from A to C' means path from A to B to C

* symmetric: all edge has corresponding edge in the other direction
x reflexive: each node has an edge to itself

e symbol: a,b,...
e alphabet: finite, nonempty set of symbols, usually denoted by X

e string: finite number of symbols “put together”
— empty string denoted by &

e Y*: set of all strings over the alphabet X
—e.g. {a,b}* ={e,a,b,aa,ab,...}

e order for writing strings is lexicographic order (shorter strings first, alphabetical order within strings
of same length)

e concatenation of strings written as z - y or just zy

e reversal 2% of a string z is = written backwards

September 8: Proofs and DFAs

e a language L over an alphabet ¥ is a set of strings over 3 (i.e. L C X*)
— can be either finite or infinite

e ¢ is an empty string, and () is the empty set
— different than {¢} and {0}

e concatenation of languages L1Ly = {zy: x € L1,y € Lo}
— e.g. {a,b}{a,bb} = {aa,ba,abb, bbb}

e Kleene star: L* = {wy,...,w, : n>0,wy,...w, € L}

— e.g. {aa}* ={¢€,aa,aaaaq, ...}, {ab,ba,aa,bb}* is all even strings

-0 =2}
e proof is a formal argument of the truth of some mathematical statement

— formal means that successive statements are unambiguous, and could be put into a syntax a
machine could check

e hints for writing proofs

state the game plan, including proof technique

keep the flow linear, and use English to move from step to step

use as little new symbolism as possible, and use existing symbolism properly

avoid the word “clearly”

— when the proof is done, clearly state you are done

e pigeonhole principle: if there are more pigeons than pigeonholes and every pigeon is in a pigeonhole,
then some pigeonhole must contain at least 2 pigeons

— for any finite sets S and T and any function f : S — T, if |S| > |T| then there exist s1,s2 € S
such that s; # s3 but f(s1) = f(s2)

proofs by induction: base case, induction hypothesis (i.e. assume true for n), use induction hypothesis
to arrive at definition for n 4+ 1

proofs by contradiction: assume opposite of claim, then deduce that opposite of claim must be false,
so claim must be true

September 13: Finite Automata

DFA is a set of states with transitions among the states

DFA starts at a designated start state and is given some input string. for each symbol in the input
string, transition function determines which state to go to next based on current symbol

formal definition of a finite automaton: 5-tuple (Q, %, 6, go, F)
— @: finite set of states
— 33: finite alphabet

d: transition function, Q@ x ¥ — @

qo: start state, ¢o € Q
F': set of accept/final states, FF C @

M accepts a string X if after starting M in the start state with head on the first square, when all X
has been read, M ends up in a final state

if 6(p, o) = ¢, then if M is in state p and reads symbol o € X, then M enters state @
size of a DFA defined by number of states, not edges

formal definition of computation: M = (Q, 3,4, qo, F') accepts w = wyws ---w, € X* if there exist
ro,...,Tn € @ such that

— To=4qo
- 6(ri,wi+1) = Ti41 for eachi:O,...,n—l
—r,€F

a language is called regular if some finite automaton recognizes it

more formal definition:

— inductively define 6* : Q@ x ¥* — @ by 6*(q,€) = ¢, §*(q, wo) = §(6*(q, w), o)
— intuitively, 0*(¢g, w) = state reached after starting in ¢ and reading the string w

— M accepts w if §*%qg,w) € F

September 15: Nondeterministic Finite Automata

a deterministic computation is one in which the machine is in a single state and knows exactly what
the next state will be

— in a nondeterministic machine, several choices for a given state may exist

an NFA can have multiple transitions to different states for the same input symbol

— in this case, machine makes multiple copies of itself, then each branch continues computing inde-
pendently

e can also have a transition for ¢, such that machine transitions without a need for input

e formal definition of a nondeterministic finite automaton: 5-tuple (Q, 3, d, qo, F')

— @: finite set of states

— 33: finite alphabet

— ¢: transition function, @ x X. — P(Q)
— qo € Q: start state

— F C @Q: set of accept states

e N=(Q,%,4,qo, F) accepts w € I* if we can write w = y1ya - - - Y, Where each y; € X U {e} and there
exist rg,r1,...7ym € Q such that:

— To = 4o
* machine must begin at start state
— 7i+1 € 0(74, yi41) for each ¢

* next state r; 11 only allowable if transition function takes current state r; to r;11 given the
next input ;41

—ry €EF

x acceptability defined if current state is in the set of final states
e NFA accepts w if there is at least one accepting computational path on w
— number of paths can grow exponentially with w, because machine keeps copying itself
e for every NFA N, there exists a DFA M such that L(M) = L(N)

— where L(N) denotes the language accepted by N
states of M are the sets of states in N, or M = P(N)

* 1l.e. if branch goes to ¢; and ¢y simultaneously, introduce a new node {q1, g2}
final states of DFA are all states that contain final state of NFA
— states that are unreachable by NFA must be defined in DFA as dead states (i.e. using 0)

e NFAs allow us to easily represent strings that begin with aaba, strings that end with aaba, etc.
e regular language is one that can be represented by a DFA /NFA

e class of regular languages is closed under

— union: Ly ULy ={z |z € AV € B}

* proof: new start state with e-transitions to start states of L1 and Lo
— concatenation: Ly o Ly ={zy|x € L1 Ay € Lo}

x proof: e-transitions from final states of L; to start state of Lo
— Kleene star: LY = {x129-- -2 | k> 0,21 € L1}

x proof: new start state that is an accept state, e-transition to original start state, e-transitions
from accept states to original start state

— complement: L;

— intersection: L1 N Lo

6

September 20: Regular Expressions
subset construction says any n-state NFA can be represented as a 2"-state DFA
regular expressions represent languages as strings

= L((R1 0 Ry)) = L(R1) o L(Rz), L(((a*) o (b)) = {a}* o {b}*

— L(-) called semantics of the regular expression
R is a regular expression if it has the form a, €,), (R; U Ry), (Ry o Rp), or (RY})
(0U1) ={0}u{1}
RUJ=Rand Roe=R
precedence order: *, then o, then U
—aUbc* = (aU(bo (c)))
can use Y to represent any symbol in the alphabet, so >*a represents all strings ending in a

using closure properties of regular languages, language is regular if it can be represented by a regular
expression

regular expressions ¢ (empty string) and) (language containing no strings) are different

September 22: Regular Languages and Countability

for every regular language L, there is a regular expression R such that L(R) =L

GNFA: have transitions labelled by regular expressions, one start and accept state, and exactly one
transition between states

for every NFA N, there is an equivalent GNFA G
for every GNFA G, there is an equivalent regular expression R

constructing GNFAs:

— rip: remove a state g, (other than gsart and gaccept)

- repair: for every two states qi ¢ {QacceptaQT}an ¢ {QStartv(IT}a let Rij7Rir7Rrr7Rrj be regular
expressions on transitions g; — q;, ¢; — Gr,Gr = ¢, @r — q;

— then in GNFA, put R;; U R, R}, R,; on the transition ¢; — g;

— essentially, look at paths from g; to g; containing ¢,, then construct regular expression such that
single arrow from ¢; to ¢; accomplishes the same thing

September 27: Non-Regular Languages

an alphabet ¥ is finite by definition, so ¥* is countably infinite (and P(X*) is uncountable)
for every alphabet X, there exists a non-regular language over
language like 01" is not regular, because machine must remember number of Os seen

approach to proving non-regularity: prove a general property for all regular languages, then show the
language does not have it

e pumping lemma: if L is regular, then there is a number p such that for every string s € L of length at
least p, s can be divided into s = zyz, where y # ¢ and for every n > 0, xy"z € L

— p is the number of states in the smallest DFA
— division s = zyz satisfies |xy| < p and |yz| <p

— each string contains a section that can be repeated any number of times with the resulting string
remaining in the language

e definition of pumping lemma: s = zyz satisfies:

— for each i > 0, 23’z € A
— |yl >0 (aka y #)
— leyl<p

e pumping lemma essentially says there is some sequence of states that takes string to a potentially
repeating sequence of states, then through a sequence to a final state

e using the pumping lemma: proof by contradiction

— suppose L is regular, so L has a pumping length > 0

— look at what strings are accepted, then show you can never have s = zyz
e example: application of the pumping lemma on the language {0"1" | n > 0}

— let s = 0P1P. consider 3 cases:

— g has only 0s. then zy?z has more 0Os than 1s, so PL does not hold

y has only 1s. then zy?z has more 1s than 0s, so PL does not hold

y has both 0s and 1s. zy?z must contain some 1s before 0s, so PL does not hold

— therefore, this language is not regular, because every regular language can be pumped
e example: application of the pumpin lemma on the language {w | w has an equal number of 0s and 1s}

— let s = 0P1P. by condition 3, |zy| < p, so y cannot contain any ls

— therefore, this language is not regular because it cannot be pumped

September 29: DFA Minimization and Context-Free Grammars
e minimizing DFAs

— states p and ¢ are distinguishable if there is a string w such that ¢*(p, w) and 6*(g, w) is final
— divide M into equivalence classes of final and non-final states

— break up equivalence classes: if p, ¢ are in the same equivalence class but §(p, o) and §(q, o) are
not equivalent for some o € ¥, then p and ¢ must be in different classes

— when all states are separated, form a new, finer equivalence relation, and repeat
e context-free grammar: set of generative rules for strings
— more powerful method of describing languages than DFAs

e using grammars: write down start variable, find a variable that is written down and replace, repeat
until no steps remain

— A— 0A1, A — B, B — # generates 0004111

10

— all strings that can be possibly generated comprise the language of the grammar
sequence of steps taken to generate a string from a grammar called a derivation

— L(G1) denotes the language generated by the grammar G4
can abbreviate several rules with A — 0A1 | B (as opposed to A — 0A1, A — B)

— example: S — aSb | SS | ¢ generates strings of properly nested parentheses

formal definition of a CFG 4-tuple: G = (V, X, R, S)

V': finite set of variables

3 finite set of terminals

R: finite set of rules, each of the form A — w for A € V and w € (VU X)*
S': start variable, where S € V

derivations: for o, 8 € (VUX)*:

— a=¢ B if @ =udv, 8 =uwv for some u,v € (VUX)* and rule A — w

— a =% B (ayields B) if there is a sequence ay, ...,y for £ > 0 such that ag = o, a = 3, and
Qi1 =G

tips for designing CFGs

many CFLs are simply the union of simpler CFLs, so construct easier CFGs, then mergy them

if language is regular, then first construct a DFA, then convert the DFA to a CFG

if machine needs to remember how many of a symbol exist (like 0"1"), then rules in the form
R — uRv will come in handy

— think about CFGs recursively, and place variables where recursive structures can appear
string is derived ambiguously if grammar derives the same string in different ways

— some languages are inherently ambiguous, such that they can only be generated using an ambigu-
ous grammar

a CFG is in Chomsky normal form if every rule is in the form A — BC or A — a
— first, add a new start variable, then eliminate rules in the form A — &, then eliminate rules in the

form A — B, patching up grammar so it generates same language

October 4: Pushdown Automata

given a context free grammar G, parse tree describes how to interpret a string x

regular grammars generate exact the regular languages
— a CFG is right-regular if any occurrence of a nonterminal in a rule is the rightmost symbol
converting a DFA to a regular grammar

— variables are states
— 0(P,0) = R becomes P — o R
— if P is accepting, add rule P — ¢

e pushdown automata composed of finite automaton + pushdown store

— pushdown store is a stack of symbols which the machine can read/alter only at the top

transitions in the form (¢, 0,v) — (¢’,7’): if in state g reading o and + on top of stack, replace v
with 4" and enter state ¢’

— stack provides additional memory beyond finite amount available in control

— equivalent in power to CFGs, and some languages are easier to express in a particular way

e when symbol is written onto the stack, all other variables shift downward

e PDA accepts a string if computation starts in start state with head at beginning of string and stack
empty and ends in a final state with all input consumed

— if no transition matches both the input and stack, PDA dies

e example PDA for 0™"1™: for every 0, push a 0 onto the stack, and for every 1, pop a 0 off the stack. if
stack is non-empty when input remains, then do not accept, else accept

e transition function includes current state, input symbol read, and variable at the top of the stack
e special variable $ used to signify an empty stack

e notation a,b — c¢ signifies that machine reading a from input may replace the symbol b on the top of
the stack with a ¢
— if a = €, machine can transition without reading any symbols
— if b = €, machine can transition without popping anything

— if ¢ = €, machine can transition without pushing anything

e example: PDA for even palindromes

- (Q7a'a5) = (Q7a)
- (q7 bv 5) = (q7 b)
— (g,8,¢),(r,a,a), (r,b,b) — (r,¢)

e formal definition of a PDA: M = (Q,%,T, 40, qo, F)

— (@: states

— X input alphabet

— I': stack alphabet

— ¢§: transition function, where @ x (X U {e}) x (TU{e}) = P(Q x (T U{e}))
qo: start state

F': set of final states

e the class of languages recognized by PDAs is the CFLs

— for every CFG G there is a PDA M with L(M) = L(G)
— for every PDA M there is a CFG G with L(G) = L(M)
— therefore, PDAs are equivalent in CFGs

e proof that every CFL is accepted by some PDA

— general idea: derivation is simply a sequence of substitutions, and each step of a derivation yields
some intermediate string. non-determinism used to guess which variable to substitute. so, store
symbols starting with the first variable in the intermediate string on the stack

— put $ on the stack. if top of stack is variable A, nondeterministically select one of the rules for A
and substitute A by the string on the RHS of rule. if top of stack is terminal a, read next symbol
and compare; if match repeat, if not, die. if top of stack is $, enter accept state if all input has

been read
— let G = (V,%, R, S). create a generalized PDA that can push strings onto the stack, via (g, a,b) —
(r,cd)

— corresponding PDA has 3 states: start state, loop state, final state
— transitions:

* start by putting S$ on the stack, then go into gioep: 0(¢start,€,€) = {(Goop, 5)}

x remove a variable from the top of the stack, replace it with a corresponding right hand side:
0(Qroop» €5 A) = {(qioop, w)} for each rule A — w

* pop a terminal symbol from the stack if it matches the next input symbol: §(giop,0,0) =
{(Groop,€)} for each o0 € &

% go to accept state if stack contains only $: §(qioop, €, 3) = {(¢accept; €)}
e proof that for every PDA there is a CFG

— modify PDA so that there is a single accept state, all accepting computations end with an empty
stack, and in every step, push or pop a symbol (but not both)

— variables: A,, for every two states p,q of M

— goal: Ap, generates all strings that can take M from p to ¢, beginning and ending with the empty
stack

— rules:

* for all states p,q,7, Apg = AprArg

« for states p,q,r,s and 0,7 € £, Apg = 0A,s7 if there is a stack symbol « such that §(p, o, €)
contains (r,7) and d(s, 7,~y) contains (g, €)

* for every state p, App — €

— start variable: A

Qstartdaccept

11 October 6: Closure Properties and Non-CFLs

e CFLs are the languages accepted by PDAs

e CFLs are closed under union, concatenation, Kleene star, and intersection with a regular set

— intersection proof: if L is context-free and Lo is regular, then construct a PDA with state set
Q1 X Q2 that keeps track of computation of both M; (a PDA) and M, (a DFA)

— intersection between two context-free languages is not necessarily context-free

— complement of a CFL is not necessarily context-free

e pumping lemma for CFLs: if L is context-free, then there is a number p such that any s € L of length
at least p can be divided into s = uvxyz where:
— wv'zy'z € L for every i >0
— Jvy| > 0 (both v and y cannot be empty)
— |vzyl <p

e pumping lemma for CFLs essentially says that string can be divided into 5 parts, where parts 2 and 4
can be pumped

e proof of pumpinig lemma
— since RHS of rules in CFGs have a bounded length, long strings must have tall parse trees

— tall parse tree must have a path with a repeated nonterminal

x let p = 0" 4 1, where b is the max length of RHS of rule, and m is the # of variables
x suppose T is the smallest parse tree for a string s € L of length at least p. then

% let h be the height of T. b* > p = b™ + 1, so h > m, therefore path of length h in T has a
repeated variable

e example: application of pumping lemma to a™b™c"

— if v and y consist of only one type of symbol, then there are no longer equal numbers

— if v and y contain more than one type of symbol, then symbols are out of order

12 October 13: General CF Recognition

e converse of CFL pumping lemma is false, because some non-context-free languages satisfy conclusion
of pumping lemma

e top-down CFG to PDA construction

— start by putting start variable on the stack

remove variable from top of stack and replace it with corresponding RHS

pop a terminal symbol from the stack if it matches the next input symbol

go to accept state if stack contains only $

e bottom-up CFG to PDA construction

start by putting $ on the stack

shift input symbols on the stack
— reduce RHS on the stack to corresponding LHS

— accept if stack contains just start variable and $
e context-free recognition: given some CFG, determine if w € L(CFG)

— could construct PDA from CFG, then run PDA on w
— could also brute-force by checking all parse trees of height up to some upper limit

— improvement: transform CFG into CNF, then use dynamic programming
e recall grammar is in CNF if every rule is in the form X - YZ or X — o

— to convert, eliminate all non-CNF rules in this order: all e-rules, unit rules (in the form X — V),
long rules (in the form X — ab), terminal-generating rules (in the form X — a where a ¢ V* and
la| > 1)

— dynamic programming can be used if grammar is in CNF to make CF recognition algorithm run
in polynomial, not exponential, time

10

13

October 18: Turing Machines and Simulations

e Turing machines are similar to finite automata, but have unlimited and unrestricted memory, and can

do everythin a computer can do

tape (which is infinite) initially contains input string, blank everywhere else

— machine can also write to tape, and to read it, needs to move head back onto it

— machine computes until it produces output, which can either be accept or reject output
formal definition of a Turing machine: 7-tuple (Q, £, I', 9, o, Gaccepts Greject)

— @Q: set of states

— 3 input alphabet not containing the blank symbol
— I': tape alphabet, where € ' and ¥ C T’

— 4: transition function, @ x ' = Q@ x ' x {L, R}

— qo € @ is the start state

— Qaccept € @ is the accept state

— Qreject € @ is the reject state, where goecept 7 Qreject
state of Turing machine called a configuration, and C yields Cy if C; can go to C5 in a single step

— if wag;bv yields ug;acv, then we have 6(g;,b) = (g;,¢, L)

— if wag;bv yields uacg;v, then we have §(g;, ¢, R)

— Turing machine accepts input w if there exists a sequence such that Cj is start and C}, is accept
language is Turing-recognizable if some TM either accepts, rejects, or enters a loop

language is Turing-decidable if some TM either accepts or rejects, without entering a loop

October 20: The Church-Turing Thesis

all TM variabnts are equivalent in power, that is, they recognize the same class of languages (aka
robust)

multitape TM has multiple independent tapes and heads

— every multitape TM has an equivalent single tape TM: concatenate tapes onto single tape, sepa-
rated with delimiter symbol, simulate multiple heads by marking symbols

— since multi-tape TM is equivalent to a TM, it must be true that a language is Turing-recognizable
if and only if a multi-tape Turing machine recognizes it

transition function for non-deterministic TM has form 6 : Q@ x I' = P(Q x I x L, R)

— still does not increase power, since every non-deterministic TM has an equivalent deterministic
Turing machine

— can simulate non-deterministic by having deterministic TM try each branch of the non-deterministic

— view computation as a tree, then breadth-first search because DFS could lead to infinite compu-
tation, therefore missing solution

e Turing-recognizable languages also called recursively enumerable

— enumerator is TM with attached printer, which it uses as an output device

11

15

— has a blank input tape, then runs and prints out strings in the language
a language is Turing-recognizable iff some enumerator enumerates it

— M: run E, and every time F outputs a string, compare to w

— E: for every i — oo, run M for i steps on each possible input s; € ¥*

algorithm is a simple series of steps for carrying out a single task
Hilbert problems: solution can easily be recognized, but not easily determined

Church-Turing Thesis: intuitive notion of algorithms is equivalent to Turing machine algorithms
— Church’s A-calculus and Turing’s machines are equivalent

algorithm describes a process for solving a problem at a high level, such that tape-level TM descriptions
are no longer necessary

October 25: Decidability, Universal Machines

can now assume some reasonable computational models, such that implementation of machine does
not determine decidability of language

Turing’s thesis says that a TM can be constructed for any computatable algorithm, so don’t need to
prove that a TM can be made

decidable, computable, and recursive mean the same thing
recognizable, recursively enumerable (aka r.e.) mean the same thing

language is recognizable if there is a TM that will halt in accept state on strings in language, but will
not necessarily halt on strings not in the language

language is decidable if TM will answer yes or no after some amount of computation
enumerators: TM without an input, but immediately starts computing and spits out strings

decidable problems

— Apra: test if DFA accepts an input string (prove by constructing TM to simulate DFA)

— Anra: test if NFA accepts an input string (prove by converting NFA to DFA)

— Aggpx: test if regex accepts an input string (prove by converting regex to NFA)

— Epra: test if language is empty (prove by searching for reachable final states)

— EQpra: test if languages of two DFAs are equal (prove by constructing symmetric difference)

— Acrg: test if CFG generates an input string (prove by converting to CNF and running for 2n—1
steps)

— Ecrg: test if language is empty (prove by marking terminal variables and trying to generate
them)

every CFL is decidable because Acrg is decidable, and we can construct a machine that runs Acprg
decider on an input

regular C context-free C decidable C Turing-recognizable

12

16

17

October 27: Undecidability

there exists a universal TM U such that when U is given (M, w) for any TM M and input w, U

produces the result of running M on w

proof that undecidable languages exist

— every recursive language is decided by a TM
— there exist countably many TMs

— there exist uncountable many languages
properties of recursive languages

— if a language is recursive, then it is also r.e.
— if a language is recursive, then so is its complement

— a language is recursive iff both it and its complement are r.e.
unsolvable problem: Ary; = {(M,w) | M is a TM and M accepts w}
— in general, determining whether a TM M accepts an input string w
Ay is recognizable, because we can simulate M and accept if M accepts and reject if M rejects

— relies on the existence of the universal TM U

— corrolary: HALTpy (does M halt on the input w) is Turing-recognizable

proof that A7), is undecidable

— suppose there exists a decider H that accepts if M accepts w and rejects if M does not accept w

— now, construct a TM D that takes as input (M), runs H on (M, (M)), then accepts if H rejects

and rejects if H accepts

— now, run D on (D). D accepts if D does not accept (D) and rejects if D does not accept (D)

— this is a contradiction (because D rejects (D) in the case when D accepts (D), so D and H cannot

exist, so A7y is undecidable
a language is decidable if it is Turing-recognizable and co-Turing-recognizable

— latter means that complement of the language is Turing-recognizable

because Arys is undecidable, Aras must not be Turing-recognizable (because Ary; is recognizable and

undecidable)

November 1: Reductions

HALTS,,: does a TM halt on the empty string, is also undecidable

— HALTy), is undecidable for any input, because input simply represents initial state of the TM

tape

for any property X, a set S is co-X if S has the property X

— non-Turing-recognizable languages: Arpr, HALT 7y

Afinste is undecidable because we can reduce Arps to Afinite

13

18

— construct M* that simulates M and accepts if M accepts, loops forever if not
one language reduces to another if we can use a black box for Ly to build an algorithm to L,

— function f is computable if there is a TM that on an input w, halts with just f(w) on the input
tape

a mapping reduction is a computable function f : X7 — X} such that for any w € ¥*, w € L, iff
f(u)) € Lo
— notation is Ly <,,, Lo

— if Ly is decidable, then so is L, and if Ly is undecidable, then so is Lo
every nontrivial property of r.e. languages is undecidable

— Rice’s Theorem: if P is a subset of the class of r.e. languages and both P and P are both
nonempty, then the language deciding if a string has the property P is undecidable

— therefore, L(M) = 0, L(M) = regular, and |L(M)| = oo are all undecidable
proof of Rice’s Theorem

— suppose that § ¢ P. pick any Lo € P and say Lo = L(M)

— define f({M)) = (M’) where M’ is a TM that simulates M on e, and if M halts, simulates My
on input w

— because HALTS,, is undecidable, so is Lp

November 3: Undecidable Problems and Unprovable Theorems

reduction is a means of converting one problem into another such that a solution to the second is a
solution to the first

HALTr) is undecidable because if we have a decider for HALTr)s, we also have a decider for Arps

proof by contradiction that HALTr), is undecidable

— assume that the TM R decides HALTr;. we can use R to construct S, a TM that decides A7y
(which we know cannot exist because Arjs is undecidable)

— construct S by running R on input. if R rejects, reject, because this implies an infinite loop,
which is not an acceptance. if R accepts, then we can simulate M, because accepting implies it
will halt.

— if M accepts, then accept, and if M rejects, reject

— S clearly decides A7y, but because Arjs is undecidable, then R cannot exist

e undecidable problems

— Erae test if TM accepts any strings

— REGULART);: test if language accepted by a TM is regular

— EQr) test if languages accepted by two TMs are equal

— EQcrg: test if languages generated by two CFGs are equal

— test if intersection of two CFGs is empty

— test if language generated by CFG is X*

— test if language generated by one CFG is the subset of another CFG

14

e function is computable if there is some TM M that on every input w, halts with just f(w) on the tape

— often take the form of machine transformations, such that f returns the encoding of a new TM
M’ based on input (M)

e formal definition of a mapping reduction: a language A is mapping reducible to a language B, written
as A <, B, if there is a computable function f : X* — ¥* where for every w, w € A < f(w) € B.
f is called the reduction of A to B

— if A <,,, B and B is decidable, then A is decidable
— if A <,,, B and A is undecidable, then B is undecidable
— if A <,;, B and B is Turing-recognizable, then A is Turing-recognizable

— if A <,;, B and A is not Turing-recognizable, then B is not Turing-recognizable

e WATCH THIS LECTURE BECAUSE THE PROBLEMS ARE BANANULARS

November 8: Computational Complexity
e formula is a well-formed string over an alphabet of variables, relations, and quantifiers
e universe describes the values variables can be assigned

— universe together with an assignment is called a model

— for some model M, a theory of M, written Th(M), is a collection of true sentences
e Th(N,+) is decidable
— Vaz3y : [x + x = y] is a true statement in this model
e Th(N,+, x) is undecidable
— reduce to HALTF,, . M halts on ¢ iff Py; = 3n such that M halts on € after n steps

e Godel’s Incompleteness Theorem: some true statement must be unprovable

e a TM has a running time ¢ : A" — N iff for all n, t(n) is the maximum number of steps taken by M
for all inputs of length n

— generally expressed as functions of n

— TIME(t) is the class of languages that can be decided by some multitape TM with running time
< t(n)

e speeding up by a constant factor is the equivalent of throwing more hardware at a problem
— too sensitive to multiplicative constants, so we instead study growth rate
e g = O(f) if there exist ¢,ng € N such that g(n) < c- f(n) for all n > ng

— O(n¥), or polynomial time, considered “fast”

— Q(k™), or exponential time, considered “slow”
e g =o(f) iff for every € > 0, In such that g(n) <e- f(n) for all n > ng
e f=0(g) iff f =O(g) and g = O(f)
e lower-order terms in a polynomial don’t matter to growth rate

o log, x = O(log, x) Va,b > 1

15

20

21

November 10: Polynomial Time

asymptotic analysis describes the running time of an algorithm on large inputs

f(n) =0

little-o also defined as lim,,_, oo o)

every multitape TM that runs in #(n) has an equivalent single-tape TM that runs in t2(n)

running time of a nondeterministic TM is time it takes for worst-case branch

— every nondeterministic TM that runs in ¢(n) has an equivalent deterministic TM that runs in
90(t(n))

brute force techniques often result in exponential running times
PATH € P, where PATH is the problem of finding a path between two nodes in an undirected graph
— depth-first search is a polynomial-time algorithm

determining if two numbers are relatively prime is in P via Euclid’s algorithm
using dynamic programming, every CFL is in P because we have shown that all CFLs are decidable

P is model-independent (for a reasonable computational model), such that changing model of compu-
tation will not remove a problem from P

November 15: NP

Hamiltonian path through a graph is a path that goes through every node exactly once

— easy to verify solution to HAM PATH by simply checking path

— however, determining if HAM PAT H exists in a graph cannot be done in polynomial time

compositeness is a similarly easily-verifiable problem, because we can simply multiply the given p and
q

a verifier for a language A is an algorithm V where A = {w | V accepts (w, ¢) for some string ¢
— verifier essentially returns true if input is a member of the language A

NP is the class of problems verifiable in polynomial time
— a language is in NP iff it is decided by some nondeterministic polynomial time TM

we can convert a nondeterministic polynomial time verifier to an NTM
— NTM nondeterministically selects a string ¢ then runs V on certificate

problems in NP

— CLIQUE: subgraph in which every pair of nodes is connected

x certificate: nodes in the clique

x verifier: test if nodes are in GG, have the appropriate number, and if subgraph contains all
edges connecting nodes

— SUBSFET — SUM: is there a collection in a set such that elements sum to a given value

x certificate: elements in the subset
x verifier: test if all elements are in set and sum to desired target

16

TSP (traveling salesman problem): there exists a tour of all cities of length < some target
* nondeterministic strategy: write does a sequence of cities for < n?, then trace through the
tour and check length (in < n)
— Hamiltonian circuit: special case of TSP, path that touches each node exactly once and returns
to start

Eulerian circuit: path passes through every edge exactly once and returns to start
— boolean satisfiability: determine assignment of variables satisfying a boolean formula

x certificate: assignment of variables
x verifier: test if resulting statement is true or false

e P is a subset of NP, but it is currently unknown if P and NP are equal
e a string for which a verifier accepts is called a certificate

e 2 — SAT € P because we can utilize implications if there are only 2 literals/clause, which will take
O(n?) steps

22 November 17: NP-Completeness

e a problem is N P-complete if it is in NP and all problems in NP reduce to it

— therefore, if we can solve any N P-complete problem in polynomial time, we can solve all problems
in NP in polynomial time (such that P = NP)

Cook-Levin Theorem: SAT € Piff P= NP

polynomial time reducibility is the analog to mapping reducibility for undecidable problems

— if A<p Band B € P, then A€ P
example reduction: 3SAT to CLIQUE

— construct a graph where each variable in boolean formula becomes a node
— connect all nodes except contradictory variables (i.e., and) and variables in the same triple
— formula is satisfiable iff there exists a k-clique, where k is the number of clauses in the 3SAT

* at least one literal must be true in every clause
* no two nodes in clique can be in the same clause, because nodes in same clause are unconnected
* clique cannot contain a contradiction, because contrary variables are not connected

e if some language B is N P-complete and B € P, then P = NP
e if B is NP-complete and B <p C for C' in NP, then C is N P-complete
e example reduction: 3SAT to VERTEX — COVER

— VERTEX —COV ER: are there k vertices such that at least one endpoint of every edge is covered

— create node for each unique variable in the formula and its complement, then connect them (i.e.
connect x; to Z;), forming a dumbbell for each unique variable

— now, construct triangle of nodes for each clause, where each node represents a literal in the clause.
connect each literal to the corresponding node created in the previous step (i.e. connect triangle
node for z; to the dumbbell node for z;)

e example reduction: VERTEX — COVER to CLIQUE

— construct G¢, or the graph formed by removing all edges, then connecting all originally-unconnected
nodes

— G has a k-cover iff G° has a |G| — k clique

17

23 Cook-Levin Theorem

e SAT is N P-complete

clearly in N P, because certificate consisting of variable assignments is easily verifiable

— computation can be represented using a tableau, where each cell on the tape is a cell in a column
— each row can be computed from the previous using a circuit

— processor in a computer is a circuit, so everything can be reduced to SAT

— QED by CS124

e more N P-complete reductions

— INDEPENDENT — SET: set of vertices such that no two are adjacent
x certificate: set of vertices in independent set
x reduction from 3SAT
- add a node for each variable in each clause, forming a triangle of connected nodes

- node in one triangle can be connected to a node in another triangle if the variables are
negations of each other

- we can have at most one vertex per triangle (and hence per clause) because triangle is
connected

- we cannot have contradictory assignments, because contradictions are also connected
- MAX —CLIQUE

x certificate: set of vertices in clique
x reduction from INDEPENDENT — SET

- any independent set in G is a clique in the complement of G, or G°¢
— MIN — COVER

x certificate: set of vertices composing cover
x reduction from INDEPENDENT — SET

- if I is an independent set in G, then V' — I is a vertex cover in G
- similarly, if C' is a vertex cover in G, then V' — C' is an independent set in G

24 Appendix A: Closure Properties

[(blitza) [x [[0 U] N]L]
regular |V |V |V |V |V |V
CF VIV IV |V | x| x
recursive | vV |V |V |V |V |V
r.e. Vx| V|V |V]| x

18

