
Computer Science 121: Introduction to Formal Systems and
Computation

Tommy MacWilliam <tmacwilliam@cs.harvard.edu>

December 19, 2011

1 Introduction and Overview

2 September 6: Sets, Relations, Strings, Languages
• sets are defined by their members

– A = B means that for every x x,∈ A iff x ∈ B

• sets can be finite or infinite

– if A is finite, then its cardinality |A| is the number of elements in A

– the empty set ∅ has cardinality 0

• set operations

– union: {a, b} ∪ {b, c} = {a, b, c}
– intersection: {a, b} ∩ {b, c} = {b}
– difference: {a, b} − {b, a} = {a}

• A and B are disjoint iff A ∩B = ∅

• power set of S = P (S) = {X : X ⊆ S}

– P ({a, b}) = {∅, {a}, {b}, {a, b}}
– |P (S)| = 2|S| (provided S is finite)

• function f : S → T maps each element s ∈ S to (exactly one) element of T , denoted f(s)

– one-to-one: s1 6= s2 =⇒ f(s1) 6= f(s2)

– onto: for every t ∈ T there is an s ∈ S such that f(s) = t

– bijection: one-to-one and onto

• S has (finite) cardinality n ∈ N iff there is a bijection f : {1, . . . , n} → S

• a k-ary relation on S1, . . . , Sk is a subset of S1 × · · · × Sk

– a binary relation on S is a subset of S × S

• a binary relation can be pictured as a directed graph

– formally, a directed graph G consists of a finite set V of vertices and a set of edges E ⊆ V × V
∗ transitive: path from A to C means path from A to B to C

1

∗ symmetric: all edge has corresponding edge in the other direction
∗ reflexive: each node has an edge to itself

• symbol: a, b, . . .

• alphabet: finite, nonempty set of symbols, usually denoted by Σ

• string: finite number of symbols “put together”

– empty string denoted by ε

• Σ?: set of all strings over the alphabet Σ

– e.g. {a, b}? = {ε, a, b, aa, ab, . . . }

• order for writing strings is lexicographic order (shorter strings first, alphabetical order within strings
of same length)

• concatenation of strings written as x · y or just xy

• reversal xR of a string x is x written backwards

3 September 8: Proofs and DFAs
• a language L over an alphabet Σ is a set of strings over Σ (i.e. L ⊆ Σ?)

– can be either finite or infinite

• ε is an empty string, and ∅ is the empty set

– different than {ε} and {∅}

• concatenation of languages L1L2 = {xy : x ∈ L1, y ∈ L2}

– e.g. {a, b}{a, bb} = {aa, ba, abb, bbb}

• Kleene star: L? = {w1, . . . , wn : n > 0, w1, . . . wn ∈ L}

– e.g. {aa}? = {ε, aa, aaaa, . . . }, {ab, ba, aa, bb}? is all even strings

– ∅? = {ε}

• proof is a formal argument of the truth of some mathematical statement

– formal means that successive statements are unambiguous, and could be put into a syntax a
machine could check

• hints for writing proofs

– state the game plan, including proof technique

– keep the flow linear, and use English to move from step to step

– use as little new symbolism as possible, and use existing symbolism properly

– avoid the word “clearly”

– when the proof is done, clearly state you are done

• pigeonhole principle: if there are more pigeons than pigeonholes and every pigeon is in a pigeonhole,
then some pigeonhole must contain at least 2 pigeons

2

– for any finite sets S and T and any function f : S → T , if |S| > |T | then there exist s1, s2 ∈ S
such that s1 6= s2 but f(s1) = f(s2)

• proofs by induction: base case, induction hypothesis (i.e. assume true for n), use induction hypothesis
to arrive at definition for n+ 1

• proofs by contradiction: assume opposite of claim, then deduce that opposite of claim must be false,
so claim must be true

4 September 13: Finite Automata
• DFA is a set of states with transitions among the states

• DFA starts at a designated start state and is given some input string. for each symbol in the input
string, transition function determines which state to go to next based on current symbol

• formal definition of a finite automaton: 5-tuple (Q,Σ, δ, q0, F)

– Q: finite set of states

– Σ: finite alphabet

– δ: transition function, Q× Σ→ Q

– q0: start state, q0 ∈ Q
– F : set of accept/final states, F ⊆ Q

• M accepts a string X if after starting M in the start state with head on the first square, when all X
has been read, M ends up in a final state

• if δ(p, σ) = q, then if M is in state p and reads symbol σ ∈ Σ, then M enters state Q

• size of a DFA defined by number of states, not edges

• formal definition of computation: M = (Q,Σ, δ, q0, F) accepts w = w1w2 · · ·wn ∈ Σ? if there exist
r0, . . . , rn ∈ Q such that

– r0 = q0

– δ(ri, wi+1) = ri+1 for each i = 0, . . . , n− 1

– rn ∈ F

• a language is called regular if some finite automaton recognizes it

• more formal definition:

– inductively define δ? : Q× Σ? → Q by δ?(q, ε) = q, δ?(q, wσ) = δ(δ?(q, w), σ)

– intuitively, δ?(q, w) = state reached after starting in q and reading the string w

– M accepts w if δ?9q0, w) ∈ F

5 September 15: Nondeterministic Finite Automata
• a deterministic computation is one in which the machine is in a single state and knows exactly what

the next state will be

– in a nondeterministic machine, several choices for a given state may exist

• an NFA can have multiple transitions to different states for the same input symbol

3

– in this case, machine makes multiple copies of itself, then each branch continues computing inde-
pendently

• can also have a transition for ε, such that machine transitions without a need for input

• formal definition of a nondeterministic finite automaton: 5-tuple (Q,Σ, δ, q0, F)

– Q: finite set of states
– Σ: finite alphabet
– δ: transition function, Q× Σε → P(Q)

– q0 ∈ Q: start state
– F ⊆ Q: set of accept states

• N = (Q,Σ, δ, q0, F) accepts w ∈ Σ? if we can write w = y1y2 · · · ym where each yi ∈ Σ ∪ {ε} and there
exist r0, r1, . . . rm ∈ Q such that:

– r0 = q0

∗ machine must begin at start state

– ri+1 ∈ δ(ri, yi+1) for each i

∗ next state ri+1 only allowable if transition function takes current state ri to ri+1 given the
next input yi+1

– rm ∈ F
∗ acceptability defined if current state is in the set of final states

• NFA accepts w if there is at least one accepting computational path on w

– number of paths can grow exponentially with w, because machine keeps copying itself

• for every NFA N , there exists a DFA M such that L(M) = L(N)

– where L(N) denotes the language accepted by N
– states of M are the sets of states in N , or M = P(N)

∗ i.e. if branch goes to q1 and q2 simultaneously, introduce a new node {q1, q2}
– final states of DFA are all states that contain final state of NFA
– states that are unreachable by NFA must be defined in DFA as dead states (i.e. using ∅)

• NFAs allow us to easily represent strings that begin with aaba, strings that end with aaba, etc.

• regular language is one that can be represented by a DFA/NFA

• class of regular languages is closed under

– union: L1 ∪ L2 = {x | x ∈ A ∨ x ∈ B}
∗ proof: new start state with ε-transitions to start states of L1 and L2

– concatenation: L1 ◦ L2 = {xy | x ∈ L1 ∧ y ∈ L2}
∗ proof: ε-transitions from final states of L1 to start state of L2

– Kleene star: L?
1 = {x1x2 · · ·xk | k ≥ 0, x1 ∈ L1}

∗ proof: new start state that is an accept state, ε-transition to original start state, ε-transitions
from accept states to original start state

– complement: L1

– intersection: L1 ∩ L2

4

6 September 20: Regular Expressions
• subset construction says any n-state NFA can be represented as a 2n-state DFA

• regular expressions represent languages as strings

– L((R1 ◦R2)) = L(R1) ◦ L(R2), L(((a?) ◦ (b?))) = {a}? ◦ {b}?

– L(·) called semantics of the regular expression

• R is a regular expression if it has the form a, ε, ∅, (R1 ∪R2), (R1 ◦R2), or (R?
1)

• (0 ∪ 1) = {0} ∪ {1}

• R ∪ ∅ = R and R ◦ ε = R

• precedence order: *, then ◦, then ∪

– a ∪ bc? = (a ∪ (b ◦ (c?)))

• can use Σ to represent any symbol in the alphabet, so Σ?a represents all strings ending in a

• using closure properties of regular languages, language is regular if it can be represented by a regular
expression

• regular expressions ε (empty string) and ∅ (language containing no strings) are different

7 September 22: Regular Languages and Countability
• for every regular language L, there is a regular expression R such that L(R) = L

• GNFA: have transitions labelled by regular expressions, one start and accept state, and exactly one
transition between states

• for every NFA N , there is an equivalent GNFA G

• for every GNFA G, there is an equivalent regular expression R

• constructing GNFAs:

– rip: remove a state qr (other than qstart and qaccept)

– repair: for every two states qi /∈ {qaccept, qr}, qj /∈ {qstart, qr}, let Rij , Rir, Rrr, Rrj be regular
expressions on transitions qi → qj , qi → qr,qr → qr, qr → qj

– then in GNFA, put Rij ∪RirR
?
rrRrj on the transition qi → qj

– essentially, look at paths from qi to qj containing qr, then construct regular expression such that
single arrow from qi to qj accomplishes the same thing

8 September 27: Non-Regular Languages
• an alphabet Σ is finite by definition, so Σ? is countably infinite (and P(Σ?) is uncountable)

• for every alphabet Σ, there exists a non-regular language over Σ

• language like 0n1n is not regular, because machine must remember number of 0s seen

• approach to proving non-regularity: prove a general property for all regular languages, then show the
language does not have it

5

• pumping lemma: if L is regular, then there is a number p such that for every string s ∈ L of length at
least p, s can be divided into s = xyz, where y 6= ε and for every n ≥ 0, xynz ∈ L

– p is the number of states in the smallest DFA
– division s = xyz satisfies |xy| ≤ p and |yz| ≤ p
– each string contains a section that can be repeated any number of times with the resulting string

remaining in the language

• definition of pumping lemma: s = xyz satisfies:

– for each i ≥ 0, xyiz ∈ A
– |y| > 0 (aka y 6= ε)
– |xy| ≤ p

• pumping lemma essentially says there is some sequence of states that takes string to a potentially
repeating sequence of states, then through a sequence to a final state

• using the pumping lemma: proof by contradiction

– suppose L is regular, so L has a pumping length > 0

– look at what strings are accepted, then show you can never have s = xyz

• example: application of the pumping lemma on the language {0n1n | n ≥ 0}

– let s = 0p1p. consider 3 cases:
– y has only 0s. then xy2z has more 0s than 1s, so PL does not hold
– y has only 1s. then xy2z has more 1s than 0s, so PL does not hold
– y has both 0s and 1s. xy2z must contain some 1s before 0s, so PL does not hold
– therefore, this language is not regular, because every regular language can be pumped

• example: application of the pumpin lemma on the language {w | w has an equal number of 0s and 1s}

– let s = 0p1p. by condition 3, |xy| ≤ p, so y cannot contain any 1s
– therefore, this language is not regular because it cannot be pumped

9 September 29: DFA Minimization and Context-Free Grammars
• minimizing DFAs

– states p and q are distinguishable if there is a string w such that δ?(p, w) and δ?(q, w) is final
– divide M into equivalence classes of final and non-final states
– break up equivalence classes: if p, q are in the same equivalence class but δ(p, σ) and δ(q, σ) are

not equivalent for some σ ∈ Σ, then p and q must be in different classes
– when all states are separated, form a new, finer equivalence relation, and repeat

• context-free grammar: set of generative rules for strings

– more powerful method of describing languages than DFAs

• using grammars: write down start variable, find a variable that is written down and replace, repeat
until no steps remain

– A→ 0A1, A→ B, B → # generates 000#111

6

– all strings that can be possibly generated comprise the language of the grammar

• sequence of steps taken to generate a string from a grammar called a derivation

– L(G1) denotes the language generated by the grammar G1

• can abbreviate several rules with A→ 0A1 | B (as opposed to A→ 0A1, A→ B)

– example: S → aSb | SS | ε generates strings of properly nested parentheses

• formal definition of a CFG 4-tuple: G = (V,Σ, R, S)

– V : finite set of variables

– Σ: finite set of terminals

– R: finite set of rules, each of the form A→ w for A ∈ V and w ∈ (V ∪ Σ)?

– S: start variable, where S ∈ V

• derivations: for α, β ∈ (V ∪ Σ)?:

– α⇒G β if α = uAv, β = uwv for some u, v ∈ (V ∪ Σ)? and rule A→ w

– α ⇒?
G β (α yields β) if there is a sequence α0, . . . , αk for k ≥ 0 such that α0 = α, αk = β, and

αi−1 ⇒G αi

• tips for designing CFGs

– many CFLs are simply the union of simpler CFLs, so construct easier CFGs, then mergy them

– if language is regular, then first construct a DFA, then convert the DFA to a CFG

– if machine needs to remember how many of a symbol exist (like 0n1n), then rules in the form
R→ uRv will come in handy

– think about CFGs recursively, and place variables where recursive structures can appear

• string is derived ambiguously if grammar derives the same string in different ways

– some languages are inherently ambiguous, such that they can only be generated using an ambigu-
ous grammar

• a CFG is in Chomsky normal form if every rule is in the form A→ BC or A→ a

– first, add a new start variable, then eliminate rules in the form A→ ε, then eliminate rules in the
form A→ B, patching up grammar so it generates same language

10 October 4: Pushdown Automata
• given a context free grammar G, parse tree describes how to interpret a string x

• regular grammars generate exact the regular languages

– a CFG is right-regular if any occurrence of a nonterminal in a rule is the rightmost symbol

• converting a DFA to a regular grammar

– variables are states

– δ(P, σ) = R becomes P → σR

– if P is accepting, add rule P → ε

7

• pushdown automata composed of finite automaton + pushdown store

– pushdown store is a stack of symbols which the machine can read/alter only at the top

– transitions in the form (q, σ, γ) 7→ (q′, γ′): if in state q reading σ and γ on top of stack, replace γ
with γ′ and enter state q′

– stack provides additional memory beyond finite amount available in control

– equivalent in power to CFGs, and some languages are easier to express in a particular way

• when symbol is written onto the stack, all other variables shift downward

• PDA accepts a string if computation starts in start state with head at beginning of string and stack
empty and ends in a final state with all input consumed

– if no transition matches both the input and stack, PDA dies

• example PDA for 0n1n: for every 0, push a 0 onto the stack, and for every 1, pop a 0 off the stack. if
stack is non-empty when input remains, then do not accept, else accept

• transition function includes current state, input symbol read, and variable at the top of the stack

• special variable $ used to signify an empty stack

• notation a, b → c signifies that machine reading a from input may replace the symbol b on the top of
the stack with a c

– if a = ε, machine can transition without reading any symbols

– if b = ε, machine can transition without popping anything

– if c = ε, machine can transition without pushing anything

• example: PDA for even palindromes

– (q, a, ε) 7→ (q, a)

– (q, b, ε) 7→ (q, b)

– (q, ε, ε), (r, a, a), (r, b, b) 7→ (r, ε)

• formal definition of a PDA: M = (Q,Σ,Γ, δ, q0, F)

– Q: states

– Σ: input alphabet

– Γ: stack alphabet

– δ: transition function, where Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P (Q× (Γ ∪ {ε}))
– q0: start state

– F : set of final states

• the class of languages recognized by PDAs is the CFLs

– for every CFG G there is a PDA M with L(M) = L(G)

– for every PDA M there is a CFG G with L(G) = L(M)

– therefore, PDAs are equivalent in CFGs

• proof that every CFL is accepted by some PDA

8

– general idea: derivation is simply a sequence of substitutions, and each step of a derivation yields
some intermediate string. non-determinism used to guess which variable to substitute. so, store
symbols starting with the first variable in the intermediate string on the stack

– put $ on the stack. if top of stack is variable A, nondeterministically select one of the rules for A
and substitute A by the string on the RHS of rule. if top of stack is terminal a, read next symbol
and compare; if match repeat, if not, die. if top of stack is $, enter accept state if all input has
been read

– let G = (V,Σ, R, S). create a generalized PDA that can push strings onto the stack, via (q, a, b) 7→
(r, cd)

– corresponding PDA has 3 states: start state, loop state, final state

– transitions:

∗ start by putting S$ on the stack, then go into qloop: δ(qstart, ε, ε) = {(qloop, S$)}
∗ remove a variable from the top of the stack, replace it with a corresponding right hand side:
δ(qloop, ε, A) = {(qloop, w)} for each rule A→ w

∗ pop a terminal symbol from the stack if it matches the next input symbol: δ(qloop, σ, σ) =
{(qloop, ε)} for each σ ∈ Σ

∗ go to accept state if stack contains only $: δ(qloop, ε, $) = {(qaccept, ε)}

• proof that for every PDA there is a CFG

– modify PDA so that there is a single accept state, all accepting computations end with an empty
stack, and in every step, push or pop a symbol (but not both)

– variables: Apq for every two states p, q of M

– goal: Apq generates all strings that can take M from p to q, beginning and ending with the empty
stack

– rules:

∗ for all states p, q, r, Apq → AprArq

∗ for states p, q, r, s and σ, τ ∈ Σ, Apq → σArsτ if there is a stack symbol γ such that δ(p, σ, ε)
contains (r, γ) and δ(s, τ, γ) contains (q, ε)

∗ for every state p, App → ε

– start variable: Aqstartqaccept

11 October 6: Closure Properties and Non-CFLs
• CFLs are the languages accepted by PDAs

• CFLs are closed under union, concatenation, Kleene star, and intersection with a regular set

– intersection proof: if L1 is context-free and L2 is regular, then construct a PDA with state set
Q1 ×Q2 that keeps track of computation of both M1 (a PDA) and M2 (a DFA)

– intersection between two context-free languages is not necessarily context-free

– complement of a CFL is not necessarily context-free

• pumping lemma for CFLs: if L is context-free, then there is a number p such that any s ∈ L of length
at least p can be divided into s = uvxyz where:

– uvixyiz ∈ L for every i ≥ 0

– |vy| > 0 (both v and y cannot be empty)

– |vxy| ≤ p

9

• pumping lemma for CFLs essentially says that string can be divided into 5 parts, where parts 2 and 4
can be pumped

• proof of pumpinig lemma

– since RHS of rules in CFGs have a bounded length, long strings must have tall parse trees

– tall parse tree must have a path with a repeated nonterminal

∗ let p = bm + 1, where b is the max length of RHS of rule, and m is the # of variables
∗ suppose T is the smallest parse tree for a string s ∈ L of length at least p. then
∗ let h be the height of T . bh ≥ p = bm + 1, so h > m, therefore path of length h in T has a

repeated variable

• example: application of pumping lemma to anbncn

– if v and y consist of only one type of symbol, then there are no longer equal numbers

– if v and y contain more than one type of symbol, then symbols are out of order

12 October 13: General CF Recognition
• converse of CFL pumping lemma is false, because some non-context-free languages satisfy conclusion

of pumping lemma

• top-down CFG to PDA construction

– start by putting start variable on the stack

– remove variable from top of stack and replace it with corresponding RHS

– pop a terminal symbol from the stack if it matches the next input symbol

– go to accept state if stack contains only $

• bottom-up CFG to PDA construction

– start by putting $ on the stack

– shift input symbols on the stack

– reduce RHS on the stack to corresponding LHS

– accept if stack contains just start variable and $

• context-free recognition: given some CFG, determine if w ∈ L(CFG)

– could construct PDA from CFG, then run PDA on w

– could also brute-force by checking all parse trees of height up to some upper limit

– improvement: transform CFG into CNF, then use dynamic programming

• recall grammar is in CNF if every rule is in the form X → Y Z or X → σ

– to convert, eliminate all non-CNF rules in this order: all ε-rules, unit rules (in the form X → Y),
long rules (in the form X → ab), terminal-generating rules (in the form X → a where a /∈ V ? and
|a| > 1)

– dynamic programming can be used if grammar is in CNF to make CF recognition algorithm run
in polynomial, not exponential, time

10

13 October 18: Turing Machines and Simulations
• Turing machines are similar to finite automata, but have unlimited and unrestricted memory, and can

do everythin a computer can do

• tape (which is infinite) initially contains input string, blank everywhere else

– machine can also write to tape, and to read it, needs to move head back onto it

– machine computes until it produces output, which can either be accept or reject output

• formal definition of a Turing machine: 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject)

– Q: set of states

– Σ: input alphabet not containing the blank symbol

– Γ: tape alphabet, where ∈ Γ and Σ ⊆ Γ

– δ: transition function, Q× Γ→ Q× Γ× {L,R}
– q0 ∈ Q is the start state

– qaccept ∈ Q is the accept state

– qreject ∈ Q is the reject state, where qaccept 6= qreject

• state of Turing machine called a configuration, and C1 yields C2 if C1 can go to C2 in a single step

– if uaqibv yields uqiacv, then we have δ(qi, b) = (qj , c, L)

– if uaqibv yields uacqjv, then we have δ(qj , c, R)

– Turing machine accepts input w if there exists a sequence such that C0 is start and Ck is accept

• language is Turing-recognizable if some TM either accepts, rejects, or enters a loop

• language is Turing-decidable if some TM either accepts or rejects, without entering a loop

14 October 20: The Church-Turing Thesis
• all TM variabnts are equivalent in power, that is, they recognize the same class of languages (aka

robust)

• multitape TM has multiple independent tapes and heads

– every multitape TM has an equivalent single tape TM: concatenate tapes onto single tape, sepa-
rated with delimiter symbol, simulate multiple heads by marking symbols

– since multi-tape TM is equivalent to a TM, it must be true that a language is Turing-recognizable
if and only if a multi-tape Turing machine recognizes it

• transition function for non-deterministic TM has form δ : Q× Γ→ P(Q× Γ× L,R)

– still does not increase power, since every non-deterministic TM has an equivalent deterministic
Turing machine

– can simulate non-deterministic by having deterministic TM try each branch of the non-deterministic

– view computation as a tree, then breadth-first search because DFS could lead to infinite compu-
tation, therefore missing solution

• Turing-recognizable languages also called recursively enumerable

– enumerator is TM with attached printer, which it uses as an output device

11

– has a blank input tape, then runs and prints out strings in the language

• a language is Turing-recognizable iff some enumerator enumerates it

– M : run E, and every time E outputs a string, compare to w

– E: for every i→∞, run M for i steps on each possible input si ∈ Σ?

• algorithm is a simple series of steps for carrying out a single task

• Hilbert problems: solution can easily be recognized, but not easily determined

• Church-Turing Thesis: intuitive notion of algorithms is equivalent to Turing machine algorithms

– Church’s λ-calculus and Turing’s machines are equivalent

• algorithm describes a process for solving a problem at a high level, such that tape-level TM descriptions
are no longer necessary

15 October 25: Decidability, Universal Machines
• can now assume some reasonable computational models, such that implementation of machine does

not determine decidability of language

• Turing’s thesis says that a TM can be constructed for any computatable algorithm, so don’t need to
prove that a TM can be made

• decidable, computable, and recursive mean the same thing

• recognizable, recursively enumerable (aka r.e.) mean the same thing

• language is recognizable if there is a TM that will halt in accept state on strings in language, but will
not necessarily halt on strings not in the language

• language is decidable if TM will answer yes or no after some amount of computation

• enumerators: TM without an input, but immediately starts computing and spits out strings

• decidable problems

– ADFA: test if DFA accepts an input string (prove by constructing TM to simulate DFA)

– ANFA: test if NFA accepts an input string (prove by converting NFA to DFA)

– AREX : test if regex accepts an input string (prove by converting regex to NFA)

– EDFA: test if language is empty (prove by searching for reachable final states)

– EQDFA: test if languages of two DFAs are equal (prove by constructing symmetric difference)

– ACFG: test if CFG generates an input string (prove by converting to CNF and running for 2n−1
steps)

– ECFG: test if language is empty (prove by marking terminal variables and trying to generate
them)

• every CFL is decidable because ACFG is decidable, and we can construct a machine that runs ACFG

decider on an input

• regular ⊆ context-free ⊆ decidable ⊆ Turing-recognizable

12

16 October 27: Undecidability
• there exists a universal TM U such that when U is given 〈M,w〉 for any TM M and input w, U

produces the result of running M on w

• proof that undecidable languages exist

– every recursive language is decided by a TM

– there exist countably many TMs

– there exist uncountable many languages

• properties of recursive languages

– if a language is recursive, then it is also r.e.

– if a language is recursive, then so is its complement

– a language is recursive iff both it and its complement are r.e.

• unsolvable problem: ATM = {〈M,w〉 |M is a TM and M accepts w}

– in general, determining whether a TM M accepts an input string w

• ATM is recognizable, because we can simulate M and accept if M accepts and reject if M rejects

– relies on the existence of the universal TM U

– corrolary: HALTTM (does M halt on the input w) is Turing-recognizable

• proof that ATM is undecidable

– suppose there exists a decider H that accepts if M accepts w and rejects if M does not accept w

– now, construct a TM D that takes as input 〈M〉, runs H on 〈M, 〈M〉〉, then accepts if H rejects
and rejects if H accepts

– now, run D on 〈D〉. D accepts if D does not accept 〈D〉 and rejects if D does not accept 〈D〉
– this is a contradiction (because D rejects 〈D〉 in the case when D accepts 〈D〉, so D and H cannot

exist, so ATM is undecidable

• a language is decidable if it is Turing-recognizable and co-Turing-recognizable

– latter means that complement of the language is Turing-recognizable

• because ATM is undecidable, ATM must not be Turing-recognizable (because ATM is recognizable and
undecidable)

17 November 1: Reductions
• HALT ε

TM : does a TM halt on the empty string, is also undecidable

– HALTTM is undecidable for any input, because input simply represents initial state of the TM
tape

• for any property X, a set S is co-X if S has the property X

– non-Turing-recognizable languages: ATM , HALTTM

• Afinite is undecidable because we can reduce ATM to Afinite

13

– construct M? that simulates M and accepts if M accepts, loops forever if not

• one language reduces to another if we can use a black box for L2 to build an algorithm to L1

– function f is computable if there is a TM that on an input w, halts with just f(w) on the input
tape

• a mapping reduction is a computable function f : Σ?
1 → Σ?

2 such that for any w ∈ Σ?, w ∈ L1 iff
f(w) ∈ L2

– notation is L1 ≤m L2

– if L2 is decidable, then so is L1, and if L1 is undecidable, then so is L2

• every nontrivial property of r.e. languages is undecidable

– Rice’s Theorem: if P is a subset of the class of r.e. languages and both P and P are both
nonempty, then the language deciding if a string has the property P is undecidable

– therefore, L(M) = ∅, L(M) = regular, and |L(M)| =∞ are all undecidable

• proof of Rice’s Theorem

– suppose that ∅ /∈ P . pick any L0 ∈ P and say L0 = L(M0)

– define f(〈M〉) = 〈M ′〉 where M ′ is a TM that simulates M on ε, and if M halts, simulates M0

on input w

– because HALT ε
TM is undecidable, so is LP

18 November 3: Undecidable Problems and Unprovable Theorems
• reduction is a means of converting one problem into another such that a solution to the second is a

solution to the first

• HALTTM is undecidable because if we have a decider for HALTTM , we also have a decider for ATM

• proof by contradiction that HALTTM is undecidable

– assume that the TM R decides HALTTM . we can use R to construct S, a TM that decides ATM

(which we know cannot exist because ATM is undecidable)

– construct S by running R on input. if R rejects, reject, because this implies an infinite loop,
which is not an acceptance. if R accepts, then we can simulate M , because accepting implies it
will halt.

– if M accepts, then accept, and if M rejects, reject

– S clearly decides ATM , but because ATM is undecidable, then R cannot exist

• undecidable problems

– ETM : test if TM accepts any strings

– REGULARTM : test if language accepted by a TM is regular

– EQTM : test if languages accepted by two TMs are equal

– EQCFG: test if languages generated by two CFGs are equal

– test if intersection of two CFGs is empty

– test if language generated by CFG is Σ?

– test if language generated by one CFG is the subset of another CFG

14

• function is computable if there is some TM M that on every input w, halts with just f(w) on the tape

– often take the form of machine transformations, such that f returns the encoding of a new TM
M ′ based on input 〈M〉

• formal definition of a mapping reduction: a language A is mapping reducible to a language B, written
as A ≤m B, if there is a computable function f : Σ? → Σ? where for every w, w ∈ A ⇐⇒ f(w) ∈ B.
f is called the reduction of A to B

– if A ≤m B and B is decidable, then A is decidable
– if A ≤m B and A is undecidable, then B is undecidable
– if A ≤m B and B is Turing-recognizable, then A is Turing-recognizable
– if A ≤m B and A is not Turing-recognizable, then B is not Turing-recognizable

• WATCH THIS LECTURE BECAUSE THE PROBLEMS ARE BANANULARS

19 November 8: Computational Complexity
• formula is a well-formed string over an alphabet of variables, relations, and quantifiers

• universe describes the values variables can be assigned

– universe together with an assignment is called a model
– for some model M , a theory of M , written Th(M), is a collection of true sentences

• Th(N,+) is decidable

– ∀x∃y : [x+ x = y] is a true statement in this model

• Th(N,+,×) is undecidable

– reduce to HALT ε
TM . M halts on ε iff PM = ∃n such that M halts on ε after n steps

• Godel’s Incompleteness Theorem: some true statement must be unprovable

• a TM has a running time t : N → N iff for all n, t(n) is the maximum number of steps taken by M
for all inputs of length n

– generally expressed as functions of n
– TIME(t) is the class of languages that can be decided by some multitape TM with running time
≤ t(n)

• speeding up by a constant factor is the equivalent of throwing more hardware at a problem

– too sensitive to multiplicative constants, so we instead study growth rate

• g = O(f) if there exist c, n0 ∈ N such that g(n) ≤ c · f(n) for all n ≥ n0

– O(nk), or polynomial time, considered “fast”
– Ω(kn), or exponential time, considered “slow”

• g = o(f) iff for every ε > 0, ∃n such that g(n) ≤ ε · f(n) for all n ≥ n0

• f = Θ(g) iff f = O(g) and g = O(f)

• lower-order terms in a polynomial don’t matter to growth rate

• loga x = Θ(logb x) ∀a, b > 1

15

20 November 10: Polynomial Time
• asymptotic analysis describes the running time of an algorithm on large inputs

• little-o also defined as limn→∞
f(n)
g(n) = 0

• every multitape TM that runs in t(n) has an equivalent single-tape TM that runs in t2(n)

• running time of a nondeterministic TM is time it takes for worst-case branch

– every nondeterministic TM that runs in t(n) has an equivalent deterministic TM that runs in
2O(t(n))

• brute force techniques often result in exponential running times

• PATH ∈ P , where PATH is the problem of finding a path between two nodes in an undirected graph

– depth-first search is a polynomial-time algorithm

• determining if two numbers are relatively prime is in P via Euclid’s algorithm

• using dynamic programming, every CFL is in P because we have shown that all CFLs are decidable

• P is model-independent (for a reasonable computational model), such that changing model of compu-
tation will not remove a problem from P

21 November 15: NP
• Hamiltonian path through a graph is a path that goes through every node exactly once

– easy to verify solution to HAMPATH by simply checking path
– however, determining if HAMPATH exists in a graph cannot be done in polynomial time

• compositeness is a similarly easily-verifiable problem, because we can simply multiply the given p and
q

• a verifier for a language A is an algorithm V where A = {w | V accepts 〈w, c〉 for some string c

– verifier essentially returns true if input is a member of the language A

• NP is the class of problems verifiable in polynomial time

– a language is in NP iff it is decided by some nondeterministic polynomial time TM

• we can convert a nondeterministic polynomial time verifier to an NTM

– NTM nondeterministically selects a string c then runs V on certificate

• problems in NP

– CLIQUE: subgraph in which every pair of nodes is connected

∗ certificate: nodes in the clique
∗ verifier: test if nodes are in G, have the appropriate number, and if subgraph contains all

edges connecting nodes

– SUBSET − SUM : is there a collection in a set such that elements sum to a given value

∗ certificate: elements in the subset
∗ verifier: test if all elements are in set and sum to desired target

16

– TSP (traveling salesman problem): there exists a tour of all cities of length ≤ some target
∗ nondeterministic strategy: write does a sequence of cities for ≤ n2, then trace through the

tour and check length (in ≤ n)
– Hamiltonian circuit: special case of TSP, path that touches each node exactly once and returns

to start
– Eulerian circuit: path passes through every edge exactly once and returns to start
– boolean satisfiability: determine assignment of variables satisfying a boolean formula
∗ certificate: assignment of variables
∗ verifier: test if resulting statement is true or false

• P is a subset of NP , but it is currently unknown if P and NP are equal

• a string for which a verifier accepts is called a certificate

• 2 − SAT ∈ P because we can utilize implications if there are only 2 literals/clause, which will take
O(n2) steps

22 November 17: NP-Completeness
• a problem is NP -complete if it is in NP and all problems in NP reduce to it

– therefore, if we can solve any NP -complete problem in polynomial time, we can solve all problems
in NP in polynomial time (such that P = NP)

• Cook-Levin Theorem: SAT ∈ P iff P = NP

• polynomial time reducibility is the analog to mapping reducibility for undecidable problems

– if A ≤P B and B ∈ P , then A ∈ P

• example reduction: 3SAT to CLIQUE

– construct a graph where each variable in boolean formula becomes a node
– connect all nodes except contradictory variables (i.e., x and x) and variables in the same triple
– formula is satisfiable iff there exists a k-clique, where k is the number of clauses in the 3SAT

∗ at least one literal must be true in every clause
∗ no two nodes in clique can be in the same clause, because nodes in same clause are unconnected
∗ clique cannot contain a contradiction, because contrary variables are not connected

• if some language B is NP -complete and B ∈ P , then P = NP

• if B is NP -complete and B ≤P C for C in NP , then C is NP -complete

• example reduction: 3SAT to V ERTEX − COV ER

– V ERTEX−COV ER: are there k vertices such that at least one endpoint of every edge is covered
– create node for each unique variable in the formula and its complement, then connect them (i.e.

connect xi to xi), forming a dumbbell for each unique variable
– now, construct triangle of nodes for each clause, where each node represents a literal in the clause.

connect each literal to the corresponding node created in the previous step (i.e. connect triangle
node for xi to the dumbbell node for xi)

• example reduction: V ERTEX − COV ER to CLIQUE

– constructGc, or the graph formed by removing all edges, then connecting all originally-unconnected
nodes

– G has a k-cover iff Gc has a |G| − k clique

17

23 Cook-Levin Theorem
• SAT is NP -complete

– clearly in NP , because certificate consisting of variable assignments is easily verifiable

– computation can be represented using a tableau, where each cell on the tape is a cell in a column

– each row can be computed from the previous using a circuit

– processor in a computer is a circuit, so everything can be reduced to SAT

– QED by CS124

• more NP -complete reductions

– INDEPENDENT − SET : set of vertices such that no two are adjacent

∗ certificate: set of vertices in independent set
∗ reduction from 3SAT

· add a node for each variable in each clause, forming a triangle of connected nodes
· node in one triangle can be connected to a node in another triangle if the variables are
negations of each other
· we can have at most one vertex per triangle (and hence per clause) because triangle is
connected
· we cannot have contradictory assignments, because contradictions are also connected

– MAX − CLIQUE
∗ certificate: set of vertices in clique
∗ reduction from INDEPENDENT − SET
· any independent set in G is a clique in the complement of G, or Gc

– MIN − COV ER
∗ certificate: set of vertices composing cover
∗ reduction from INDEPENDENT − SET
· if I is an independent set in G, then V − I is a vertex cover in G
· similarly, if C is a vertex cover in G, then V − C is an independent set in G

24 Appendix A: Closure Properties

〈blitza〉 ? φ ◦ ∪ ∩ L

regular X X X X X X
CF X X X X × ×

recursive X X X X X X
r.e. X × X X X ×

18

