week3

Tommy MacWillian

Desig

GDB

Running Tim

Searc

Recursion

Practice Problems

week3

Tommy MacWilliam

tmacwilliam@cs50.net

September 26, 2011

Announcements

week3

Tommy MacWillian

Desigr

Running Tim

Searc

Sorting

Recursio

Practice Problems pset{0,1}: returned!

pset2: Friday

https://cs50.net/lectures

▶ http://cs50.net/ohs

Today

week3

Tommy MacWilliam

Desig

riuming rim

Searc

Sorting

Recursion

Practice

- Design
- ► GDB <333333333
- Running Time
- Searching
- Sorting
- Recursion
- Practice Problems

Hacker Tip of the Week

week3

Tommy MacWilliam

Desig

GDB

Running Time

Searc

Sorting

Recursion

- ▶ ssh jharvard@192.168.56.50
 - equivalent to Terminal in your Appliance!
 - Windows: http: //www.chiark.greenend.org.uk/~sgtatham/putty/
 - ► Mac: http://www.iterm2.com/
- ▶ smb://192.168.56.50
 - open files in your Appliance on your desktop!
 - more detail: https:
 //manual.cs50.net/Appliance#How_to_Transfer_
 Files_between_Appliance_and_Your_Computer

Correctness

week3

Tommy MacWillian

Design

Searc

Recursion

Practice Problems don't forget to check for corner cases!

- **▶** 0
- negative numbers
- word instead of number
- number instead of word
- nothing
- not enough arguments
- too many arguments
- etc

Design

week3

Tommy MacWillian

Design

abb

Running Tim

Searc

Sorting

Recursio

Practice Problems

don't do too much work if you don't have to!

don't check conditions you know are true

don't create unnecessary variables

int
$$y = x + 5$$
;
int $z = y * 2$;

Design

week3

Iommy MacWillian

Design

GDB

Running Time

Searc

00.9

Recursion

- always ask yourself "is there any way I can solve this problem better?"
 - problems have many correct answers, but few elegant ones
 - often elegant != straightforward
- shorter is not always better

Greedy Revisited

week3

Tommy MacWillian

Design

GDB

Running Tin

Searc

Sorting

Recursion

- calculating change can be done in one line
 - no one did this, and you were not expected to do this
 - ▶ I promise.

Greedy Revisited

week3

Tommy MacWilliar

Design

GDB

lunning Tim

Searc

Recursion

Practice Problems example time!

▶ greedy.c

Greedy Revisited

week3

Tommy MacWillian

Design

GDB

Running Tim

Searc

Sorting

Recursion

Practice

don't do too much work if you don't have to

- need loops? not really
- need more variables? not really
- however, meaning must still be clear!
 - long, complicated expressions may look fancy, but can be really confusing to read

week3

Iommy MacWillian

Desigi

GDB

nullilling tilli

Searc

Recursion

- ► GDB: The GNU Debugger
 - the awesome debugger
- allows you to walk through your program step-by-step
- as nice as a million printf statements are

week3

Tommy MacWillian

Design

....

riuming min

. ..

. .

Recursion

- gdb program
- run: run the loaded program
- break: create a breakpoint
 - break 10: create a breakpoint at line 10
 - break function: create a breakpoint at a function

week3

Iommy MacWilliam

Design

GDB

Running III

Searc

ŭ

Recursion

Practice Problems ▶ info break: list all breakpoints

disable 1: disable breakpoint 1

enable 1: enable breakpoint 1

week3

Iommy MacWilliam

Desigi

GDB

Running I in

Searc

Corting

Recursion

- continue: continue until next breakpoint
- ▶ list: show source code around breakpoint

week3

Tommy MacWilliam

Desigi

GDB

nullilling Tilli

Searc

9

Recursion

- next: execute the next line of code
 - ► function call == one line
- step: execute next line of code
 - ▶ if function, go into function

week3

Tommy MacWillian

Desig

riaining riii

B - -----

i tecui sioi

- print variable: print the value of a variable
 - printf: just like C's printf, so good for arrays/strings
- backtrace: see list of functions that got you here
- ▶ set var variable=value: set the value of a variable
- ▶ call function(): execute a function

week3

Tommy MacWillian

Desigi

GDB

unning Tin

0 - - ----

Contin

. .

Recursion

- example time!
 - ▶ gdb.c

Definition

week3

Tommy MacWillian

Desig

GDB

Running Time

Searc

Sorting

Recursion

- describes how long an algorithm takes to run
- not in terms of milliseconds, but steps
 - since seconds will vary by machine
 - e.g. one step == look at one array element

Big O

week3

Tommy MacWillian

Desig

Running Time

Oca.o.

Recursion

- ▶ O: worst-case running time
 - given the worst possible scenario, how fast can we solve a problem?
 - e.g. array is in descending order, we want it in ascending order
 - most important when describing an algorithm

Omega

week3

Iommy MacWilliam

Desig

abb

Running Time

Searc

Sorting

Recursion

Practice Problems Ω: best-case running time

- given the best possible scenario, how fast can we solve a problem?
 - e.g. array is already sorted

Theta

week3

Iommy MacWilliam

Desig

GDB

Running Time

Searc

Sorting

Recursion

- ▶ Θ: both best-case and worst-case
 - e.g. best and worst are the same running time

Common Running Times

week3

Tommy MacWillian

Desigr

арь

Running Time

. .

Sortino

Recursion

Practice Problems in ascending order:

► O(1): constant

► O(log n): logarithmic

► *O*(*n*): linear

 $ightharpoonup O(n^c)$: polynomial

 \triangleright $O(c^n)$: exponential

► O(n!): factorial

Comparing Running Times

week3

Tommy MacWillian

Design

Running Time

Searc

Sorting

Recursio

- \triangleright O(n), O(2n), and O(5n+3) are all the same thing: O(n)
 - ▶ constants drop out, because *n* dominates
- similarly, $O(n^3 + 2n^2) = O(n^3)$
 - $ightharpoonup n^3$ dominates n^2
- ▶ however, $O(n^3) > O(n^2)$
 - 2 and 3 are not constants here

Determining Running Times

week3

Tommy MacWilliam

Desig

GDB

Running Time

Searc

i lecurator

example time!

▶ n1.c, n2.c, n3.c

Real-World Efficiency

week3

Running Time

than O's and n's

problem?

```
for (int i = 0; i < strlen(word); i++)</pre>
    printf("%c", word[i]);
```

runtimes are nice, but actual efficiency is about more

Real-World Efficiency

week3

Tommy MacWillian

Desig

GDB

Running Time

Searc

9

Recursion

Practice Problems length of word isn't going to change, so why are we recomputing it?!

```
int length = strlen(word);
for (int i = 0; i < length; i++)</pre>
```

Linear Search

week3

Tommy MacWillian

Desigi

GDB

Running Tim

Search

301 tillig

Recursion

Practice Problems implementation: iterate through each element of the list, looking for it

runtime: O(n), $\Omega(1)$

does not require list to be sorted

Binary Search

week3

Tommy MacWillian

Desigi

D. Ti...

3

Search

Recursion

- implementation: keep looking at middle elements
 - start at middle of list
 - if too high, forget right half and look at middle of left half
 - if too low, forget left half and look at middle of right half
- runtime: $O(\log n)$, $\Omega(1)$
- requires list to be sorted

Bubble Sort

week3

Iommy MacWillian

Desigr

GDB

Running Tim

Searc

Sorting

Recursio

- implementation: if adjacent elements are out of place, switch them
 - repeat until no swaps are made
- runtime: $O(n^2)$, $\Omega(n)$

Selection Sort

week3

Tommy MacWillian

Desig

abb

nullilling filli

Searc

Sorting

Recursion

- implementation: start at beginning of list, find smallest element
 - swap first element with smallest element
 - go to second element, treat that as the new first element, continue
 - because everything to the left is already sorted
- ▶ runtime: $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$

Insertion Sort

week3

Tommy MacWillian

Desigr

rtaining riii

Searc

Sorting

Recursion

- implementation: start at beginning of list, find smallest element
 - insert smallest element to right of first element
 - everything to the right shifts over one spot
 - go to second element, treat as the new first element, continue
- ▶ runtime: $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$

Sorting Demos

week3

Sorting

- http://www.cs.ubc.ca/~harrison/Java/ sorting-demo.html
- http://cg.scs.carleton.ca/~morin/misc/sortalg/

week3

Tommy MacWilliam

Desig

арь

Running Tin

Searc

Sorting

Recursion

Practice Problem: basic idea: function calls itself

 sounds simple, but can lead to very elegant solutions to problems

week3

Recursion

- base case: when function should stop calling itself
 - without a base case, function would call itself forever!
 - result: segfault
- recursive case: function calls itself, probably using different arguments
 - same arguments every time means function would call itself forever!
 - (okay maybe not with global variables, but those are a bad idea)

week3

Tommy MacWillian

Desigi

GDB

Running I in

Searc

Recursion

- don't forget to return something!
 - base case usually returns some constant value
 - recursive case usually returns a call to itself

week3

Tommy MacWillian

Desig

GDB

lunnina Tin

Searc

Sorung

Recursion

- your turn!
 - ▶ factorial.c, fibonacci.c

Practice Problems

week3

Tommy MacWillian

Desigi

GDB

Running I im

Searc

Surting

Recursio

- reverse a string
 - think about design and runtime!
- implement the GCD formula recursively
 - http:
 //en.wikipedia.org/wiki/Greatest_common_divisor

Feedback

week3

Tommy MacWillian

Desig

арь

Running I in

Searc

Sorting

Recursion

- how was section today?
 - ▶ http://tommymacwilliam.com/cs50/feedback